	Q.P. Code: 20CS0531	R20		
	Reg. No:			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PU (AUTONOMOUS) B.Tech III Year I Semester Regular Examinations March-2023 SOFT COMPUTING	JTTUR		
	(Common to CSE & CSM)			
	Time: 3 hours	lax. Ma	rks: 60	
	(Answer all Five Units 5 x 12 = 60 Marks)			
1	a Distinguish between Supervised Learning and Unsupervised Learning.	CO1	L4	6 M
	b Describe the different activation functions in Neural Networks. OR	CO1	L2	6M
2	a Explain the working principle of Artificial Neuron.	CO1	L2	8 M
	b Differentiate Biological Neuron and Artificial Neuron. UNIT-II	CO1	L4	4M
3	a Generalize the Adaptive Resonance Theory Neural Network.	CO2	L6	8 M
	b Identify some applications of ART Model. OR	CO2	L2	4M
4	Explain Hamming neural network with neat diagram.	CO2	L2	12M
5	a Demonstrate the membership functions in fuzzy logic.	CO4	L3	6M
	b Define Fuzzification and explain membership value assignment in fuzzy logic. OR	CO4	L2	6M
6	a Explain with neat block diagram the various components of a Fuzzy Logic System.	CO3	L2	8M
	b Differentiate the fuzzy sets and classical sets. UNIT-IV	CO3	L4	4M
7	a List out the different reproduction and inheritance operators used in GA.	CO5	L2	6M
	b Identify the Advantages and Disadvantages of Genetic Algorithm.	CO5	L2	6M
	OR			
8	Explain the Various Operators in genetic algorithm. UNIT-V	CO5	L2	12M
9	With a neat Architecture, explain Fuzzy Back propagation network. OR	CO6	L2	12M
10	a Explain Genetic Algorithm based Back propagation network.	CO6	L1	5M
	b Illustrate Neuro – Fuzzy hybrid system with neat diagram.	CO6	L3	7M

*** END ***

R20

	(Martin Common (Carlinon (Carlinon))	
	a set out the afference reproduction and inheritance operators used in GA.	